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SUMMARY 

A theory for the general analytical calculations of chromatogram for mixtures 
of rod-like molecules with the same dimensions and the same shape is proposed for 
the case when the elution is carried out with a linear molar&y .graclient of com- 
peting ions. Most of the theory is valid, however, for molecules other than those 
with rod-like shapes. If the adsorption occurs on C crystal sites of hydroxyapatite, 
in many instances all of the theory is valid for molecules of any shape. The 
theory is based on the classical theory of adsorption chromatography, but the 
physical meanings of the basic assumptions in the classical theory are necessarily 
reconsidered. It is shown that the differential equation originally proposed by Wilson 
for the description of the chromatographic process on the column is generally valid in 
gradient elution, assuming that there is no longitudinal difiusion of molecules on the 
column, while the equation that was modified by DeVault is not valid except for 
some extreme cases. In stepwise elution, however, it is DeVault’s equation and not 
Wilson’s equation that is generally valid. 

INTRODUCTION 

The classical theory of adsorption chromatography was developed nearly 40 
years ago by Wilsonl, DeVaultZ and Weiss3 on the basis of the assumptions (a) that 
thermodynamic equilibrium between the adsorbed phase and solution is attained in- 
stantaneously and (b) that the longitudinal diflusion of molecules on the column is 
negligible. These assumptions would be justified, at least in hydroxyapatite (HA) 

l The term “rigid rod-like macromokcules” has been reduced to “rod-11&e macromolecules” 
in the fitk as it was shown in an earlier p2peP that the theory can be extended to the case of 
molecuks with flexiile structures. 
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chromatography, by the fact that the width of the chromatographic peak is usually 
large and that no virtually deformation of the chromatogram or change in the elution 
molar&y is observed when the flow-rate is varied. In fact, virtually the same chro- 
matoaam is observed if the flow-rate varies between 1 and 0.1 ml/min with a column 
with a diameter of 1 cm, which is common practice. It is necessary, however, to 
reconsider the physical meanings of these assumptions (see Theoretical, section E and 

F>- 
In earlier paperss4 a theory of chromatography on HA columns with small 

loads was developed for the case when the elution is carried out with a linear mo- 
!arity gradient of competing ions (see below). This theory is based on the classical 
assumptions (a) and (b) above, and a further assumption (c) that sample moIecuIes 
and particular ions from the buffer compete for adsorbing sites that are arranged 
on the crystal surface of HA. (For the reasoning behind this assumption, see, for 
instance, Introduction in ref. 8 and Appendix I in ref. II.) Two types of adsorbing 
sites, called C and P sites, exist on different crysta! surfaces of HA’~‘~‘*‘. In many 
instances, however, the adsorption of molecules occurs on virtually only one of these 
crystal- surfaces4.5, whcch is the case treated in this paper. With small loads, mutual 
interactions among molecules are negligible, and the chromatography of a component 
in the mixture is carried out independently of the coexistence of the other compo- 
nents. It has been shown 4v5 that the elution molarity can reasonably be expressed 
as a function of the product, S, of the slope, g, of the molarity gradient of com- 
peting ions and the length, L, of the column, and a theory for the analytical cal- 
culation of the (mean) elution molar&y of the chromatographic peak was proposed. 
On the basis of this theory, several experiments were analysed in order to check 
quantitatively the parallelism between the theoretical and experimental results, and 
several experimental parameters such as the number, x’, of adsorbing sites of HA 
covered by an adsorbed molecule, the interaction ener_q, E, between an adsorbing 
site of HA and an adsorbed functional group of the molecule, etc., were esti- 
mated4~5~7*8. In earlier papers 7V8, both the distribution and the structure of adsorbing 
sites on the surface of HA were explored on the basis of crystallographic data. 
Reasonable results obtained so far verify the validities of both the theory itself and 
the. basic assumptions thereof (see above). A theory on the basis of the classical 
theory1-3 was proposed6 with which some information on the width of the chro- 
matographic peak can be obtained. The relationship between this theory and that 
developed earliefls5 (see above) was also discussed6. 

In earlier papersg-l6 in this series, a theory of chromatography for mixtures 
of rod-like macromolecules was developed also for a linear gradient of competing 
ions and on the basis of assumptions (a), (b) and (c) above, taking into account the 
fact that there are repulsive interactions among molecules adsorbed side by side on 
the crystal surface of HA. Owing to these interactions, the total chromatogram of the 
mixture is deformed and tends to be a right-angled triangle as a whole, beginning 
abruptly and fmishing gradually with considerable tailingg-16; this explains reasonably 
well the general shape of the experimental chromatogram. It was also shown’5*‘6 
that this deformation of the chromatogram should be associated with a high chro- 
matographic resolution among molecules with very slight structual differences. In this 
step, however, the calculation of theoretical chromatograms for mixtures of any types 
of (rod-like) molecules can be performed only numerically by using several ap- 
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proximation~~~_ A theory for the analytical calculation of chromatograms was pro- 
posedr6.for the case when all molecules have the same large dimensions and the same 
shape. In ref. 16, it is mentioned that the theory is valid only when the slope of 
the gradient of competing ions is small. In Appendix I of this paper, it will be 
shown, however, that the theory in ref. 16 is valid almost independently of the 
slope of the gradient. 

..In this paper, a theory for the analytical calculation of chromatogramsGfor 
mixtures of rod-like molecules with the same dimensions, and the same shape but 
with any dimensions, is proposed for the case when the elution is carried out with a 
linear molarity gradient of competing ions. Most of the theory is valid, however, 
for molecules other than those with rod-like shapes (see Discussion)_ Further, in 
many instances all of the theory can be considered to be valid for molecules with 
any shapes if the adsorption occurs on C sites of HA (see Discussion; for C sites, 
see ref. 7). The present theory is based on the classical theory’“, but the physical 
meanings of assumptions (a) and (b) in the classical theory (see above) are necessarily 
reconsidered. It is shown that the differential equation originally given by Wilson’ 
for the description of the chromatographic process on the column is generally valid 
for gradient elution, assuming that there is no longitudinal diffusion of molecules 
on the column, while the equation that was modified by DeVault’ is not valid except 
for some extreme cases. In stepwise elution, however, it is DeVault’s equation and 
not Wilson’s equation that is generally valid. In Appendix I, some properties of HA 
chromatography when molecules have very large dimensions are discussed. In Ap- 
pendices I and II, relationship of the present theory with theories developed in earlier 
paper&r6 are considered. 

THEORETICAL 

(A) Wilson’s equation and lIeVault’s equation 
A general partiai differential equation that would describe the development 

of a solute on the column in adsorption chromatography was given originally by 
Wilson’ on the basis of assumptions (a) and (b) in Introduction. The equation pro- 
posed by Wilson, which involves simultaneous equations for a mixture of molecular 
species 1, 2, . . . . e’, ._., g, can be written as 

(@’ = 1, 2, -_., Q) in which xCe,, is the molecular density of species Q’ on the ad- 
sorbent, i.e., the proportion of the effective surface of HA occupied by adsorbed 
molecules of species $, being unity when the surface is saturated only with species 
e’, as a function of the elution volume, V, and position, L, on the column expressed 
as the distance from the top of the column; a * is the pore volume per unit length 
of the column, i.e. 

* a is written as Y in earlier papers7*8. 
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and C,,, is the concentration of species e’ in solution or in the mobile phase, as a 
function of v and L, defined as’ 

where B<e*i is the ratio of the amount of species $ in solution or in the inter- 
stitial liquid to the total amount of the same species in a column section. The 
quantity X~e,,/&-cSL therefore represents the diierence, at time t or at an elution 
volume V, of the concentration C,,, between the position L - d.L and L on the 
column, and 2;l,,.,/8V-S V represents the change occurring between time t and t + 
dt or between the elution volume V and V t dV, of the density x(e#) at position L 
on the co1umn. A genera1 physical meaning of eqn. 1 will be reconsidered in section 
E. It appears that Wilson himself considers simply that eqn. 1 represents a form of 
the continuity equation of the flow when the pore volume of the column is neg- 
ligibly small (see ref. 1 and below). It is evident, however, that the fist term on 
the left-hand side of eqn. 1 corresponds to the divergence term in the general con- 
tinuity equation of the flow (cf., eqn. 39). The second term, which would correspond 
to the term expressing the change, with time, of the density of the fluid in the 
general continuity equation, would have to describe, therefore, the.change, with time 
or the elution volume, of the molecular density or the concentration of species .@ 
in a section of the column, i.e., the change in the amount of species e’ per unit 
volume of the column interstices, including the surface itself of the adsorbent, or 
the crystal surface in the case of HA. In eqn. 1, however, this term expresses only 
the change in the molecular density on the crystal surface. DeVaulP modified 
WiIson’s equation in order for it always to behave as the continuity equation of the 
flow, which can be written as 

(e’= 1,2, . . . . e). It can be seen that the second term on the left-hand side of eqn. 4 
now expresses the change in the molecular density in the column interstices, including 
the crystal surface. It should be noted that DeVault’s equation (eqn. 4) reduces to 
WiIson’s equation (eqn. 1) and that Wilson’s equation acquires the property of the 
continuity equation of the flow (1) when the chromatography is carried out with a 
low RF vaIue, i.e., when the probability that molecules are in solution is low during 
the development process in chromatography, which is possible provided that the 
pore voIume, a, of the column is small, and/or that the adsorption energy per 
moIecuIe is high, and (2) when the mechanism itself of the chromatography is virtually 
independent of the mokcules in solution (see section CT). When a: tends to zero, the 
term a-aC,,.,jW in eqn. 4 tends to zero, but the term a-ax<e*JaF’ does not tend 
to zero, because this term can be rewritten as a[(1 - Bces3/Bceq - C’<e+yaV and Bee., 
tends to zero when (L tends to zero; this means that eqn. 4 reduces to eqn. 1. 

In linear gradient elution, it is convenient to transform the variables V and 
L in eqhs. 1 and 4, respectiveIy, into the molar&y, m, of the eluent (molarity of 
competing ions in HA chromatography) and the parameter S, which was introduced 
earlierC and is defined as 

s=gL (5) 
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where g represents the slope of the gradient of (competing) ions expressed as the 
change in molarity per unit length of the column, i.e. 

dm g=_$=a.- 
dY (6) 

By using these new variables, eqns. 1 and 4 can be rewritten, respectively, as 

=W, 
as 

+_ %e,) _ 0 
am (7) 

(@’ = 1, 2, ..-) e). Eqns. 1-S are valid for general adsorption chromatography. 

(8) Hydroxyapatite chromatography 
In HA chromatography, assuming that the activity of competing ions is pro- 

portional to molarity (it was shown that this is a reasonable assumption at least when 
the competing ions are Na+ and the molarity of the ions is less than the order of 
0.2 M; ref. 8) and by taking into account the mutual interactions among molecules 
adsorbed on the crystal surface, the parameter Bee*, or B,,s,/l - &_Y, can be expressed 
as930 

and eqn. 3 can be rewritten as 

where 

x = 5 X(&T”) 
e-=i 

WV 

(11) 

In eqns. 9 and 10, 9’ is the proportionality constant between the “activity”, ~1, of 
competing ions and the molarity, m (refs. 4-S); x’ is the number of sites of HA 
on which competing ions cannot be adsorbed owing to the presence of au adsorbed 
macromolecule, where we omit the suKix e’ because only the case when all molecules 
have the same dimensions and the same shape is treated in this paper; If(;c) ex- 
presses the mutual interactions of macromolecules on the crystal surface of HA (see 
below). In eqn. 11, 2 represents the proportion of the effective surface of HA oc- 
cupied by adsorbed molecules of all species 1,2, ._., e, being unity when the surface 
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is saturated with these molecules. In eqn. 12, --E (s > 0) is the adsorption energy 
of an adsorption group of the macromolecule on to one of the sites of HA; xo,,, 
the average number (concerning time) of adsorption groups per molecule that react 
with sites of HA, because the adsorption of each molecule must follows a Boltzmann 
distributiong. Similarly the parameter x’ should represent the average quantity_ With 
rod-like molecules, however, the adsorption by using a lateral surface, parallel to the 
main axis of the rod, must be energetically favoured, and the molecule must always 
be adsorbed by using this surface. Therefore, the vaIue of x’ must be virh$ly con- 
StaIlt. -X(p) E therefore represents the average adsorption energy per molecule, which 
was written as Z&e,, in earlier papersQ-16; Gc<e*, is related to some properties of the 
molecule, including the symmetry, the distribution of the adsorption groups on the 
molecular surface and the flexibility of the mofecular structures; and B represents 
the property of the column defined by eqn. 31 in ref. 9 or eqn. 42 in ref. 10, 
which can be written as 

(13) 

where T is a constant that is effectively independent of the type of molecules (see 
refs. 9 and 10, in which F is written as r3); z’ is the number of possible orienta- 
tions of each molecule on the crystal surface of HA, which should be virtually equal 
to the coordination number, z, of the adsorbing sites on the crystal surface when 
these sites are C sites’ ; and &I and dV are the total effective crystal surfaces and 
the interstitial volume in the column section, respectively. /I is related, therefore, to 
Q (see eqn. 2) by the relationship 

6A a/? = rz’z (14) 

With rod-like molecules, the function H(;c) ( see eqns 9 and 10) can be written9J0 as 

where i? [which was written as --Y& in refs. 9-16, where B represents the inter- 
action energy per molecuIe (see below) measured in units of the adsorption energy, 
u,,,, of molecular species 1, when all molecules have the same dimensions and the 
same shape] is the interaction energy for one of molecules with others on thecrystal 
surface, provided that one of the two sides of the rod is brought into contact with 
(or, more precisely, keeps the minimum distance from) other molecules that are 
adsorbed side by side in the same orientation and that the distribution of molecules 
on the crystal surface follows the Bragg-Williams approximation9 ; with the usual 
repulsive interactions, g is defined as positive’*“. The formula of the numerator on 

- The value of z for the C site is 2 (ref. 7). It is presumable that tbis value is virtually equal to the 
v&e of z’ when the density of molecules on the crustal surface is small. Even with a high molecular 
density, z’ must be equal to 2, because the molecules with elongated shapes must be adsorbed 
parallel to one another (see Appendii I in ref. 9). 
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the right-hand side of eqn. 15 can be considered to be different if $he shape of the 
molecule dithers from that of a rod. The denominator on the right-hand. side of 
eqn. 15 is an approximate expression of the probability [denoted by p(;c) in earlier 
papersg-16] that, when a new molecule is added at random to the .crys*tal surface, 
a proportion x of which is already occupied by molecules, it- is not superimposed 
on the already adsorbed molecules. It should be noted that iY(;c) tends to unity 
when x tends to zero or with small loads, and that each equation in the simul- 
taneous equations, eqns. 7 and 8, becomes independent of the another. However, 
if there are no energetic interactions among adsorbed molecules or if _J? = 0, then 
H(;I) is not always unity, and each equation in eqns. 7 and 8 is not independent 
owing to the’denominator on the right-hand side of eqn. 15. In other words, this 
term would represent geometrical interactions among molecules on the crystal sur- 
face, which, however, are not very important in the ‘chromatography; this can be 
understood by the fact that, in the development process in chromatography, in which 
x is not very close to unity (it is evident that, in order for the migration of the 
band of molecules to occur on the column, the value of x should be less than 
unity), the function B&m) is virtually independent of the probability pi*“, and 
this is also the reason why the theoretical chromatogram can be calculated with 
sufficient exactness by using the approximate expression 1 - x for the function p(x) 
(see above). 

(C) The case when _..I >> 1 
It can be understood, from the physical meanings of parameters x’ and x(~., 

(see section B), that to change the value of x’, while keeping the value of the param- 
eter 

constant, corresponds to considering homologous molecules with different dimensions 
or different lengths. We show now that, if x’ B 1 [and if &s,, is constant], DeVault’s 
equation (eqn. 8) reduces to Wilson’s equation (eqn. 7) in gradient elution: by using 
eqns. 10, 12, 15 and 16, we obtain, for the ratio of the concentration of species 
e’ in solution to the density on the crystal surface, the relationship 

in which Z<e,, is the parameter introduced as eqn. 48 in an earlier paper”, i.e. 

(17) 

where it can be considered that E = 0(x’), because both ,?? and X’ should be pro- 
portional to the length of the rod-like molecule. As x is not very close to unity in 
the development process in chromatography (see section B) and as x’ >> 1 (see 



above)i the term jj+, - (1 - d]l’x’ on the right-hand side of eqn. 17 is virtually 
unity, and eqn. 17 reduces to 

.- : 

(1% 

which shows the value of C (o,j /x <e,, makes a sharp transition, with- increase in Zre.,, 
from 0 to 00 at Z[e,, = 1. This means that, when .Zce,, < 1, Cc,., << %<a*) and that 
the second term on the left-hand side of eqn. 8 is negligible (compared with the 
tmrd.term). Thus, eqn. 8 reduces to eqn. 7. When Zce*, = 1, it &au be seen from eqn. 
18 that x decreases monotonously with increase in ti, which .is carried out inde- 
pendently of both the concentration and the amount of molecules in solution or the 
interstitial liquid on the column. This means that the change, with change in m, 
in the total amount of molecules in the section of the column is due only to .the 
change in the- amount on ,the crystal surfaces. Thus, eqn. 7 again holds. Finally, 
when .ZcO,, >. 1, then Cre*B >> %(a,,, which means that virtually all molecules in the 
column &ion are in solution. In this instance, the flow equation of moltiules can 
be written simply as 

(20) 

(e’ = 1,2, __., Q), which can be considered as a boundary condition that both eqns. 
7 and 8 should fulfil spontaneously when Z,,., --f 1-O. Hence, provided that x’ >> 1, 
DeVault’s equation (eqn. 8) always reduces to Wilson’s equation (eqn. 7). The 
validity of Wilson’s equation when x’ has any value is considered in section E. 

(0) Sohtion of Wilson’s equation in gradient e&ion 
,We now solve Wilson’s equation (eqn. 7) for gradient elution on an HA 

column: eqn. 7 can be rewritten by using eqn. 10 (and eqn. 11) as 

(@’ = I, 2 , . . . . e), which are simultaneous linear first-order partial differential equa- 
tions for xo), xcz), ._., ;Cte) as functions of s and 111. Let us find solutions for eqn. 21 that 
fulfil a boundary condition with the physical meaning. This condition is that, in 
rhe development process of the chromatography, there is no inflow of sample 
molecules at the top of the column. In other words, when L = 0 or when s = 0 
(see eqn. 5) (and when V > 0 or when m > m,,, where mi, is the initial value of 
in), then 

-c&Y, = 0 (22) 
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@‘- = 1,2, i.1, e). This means that, when s --f 0, the first term on the left-hnad side 
of eqn. 7-becomes . . ‘. 

= Ge*,@% ml 
8s 

where 

6s = lim As 
AS-+0 

Therefore, with eqn. 10, eqn. 7 becomes 

= . 

(23) 

(24) 

(25) 

(e’ = I,& .--, e), which are simultaneous differential equations for ;zC1), xCr), . . . . ;Cte, 
as functions of only m. If an equation for species e” in eqn.- 25 is divided by an- 
other for species g’, then 

(e’, $ = 1, 2, __., e) is obtained, which can easiIy be integrated to give 

(26) 

(27) 

(e’, e” = 1, 2, . . . . e) where we define x*~~,, and x*~~,,, as the initial values of Xtc,, 
and &..,, respectively, when the development process of the chromato,gaphy begins 
(for a further interpret&ion for XfCo,, and x*(s.:,, see below). Eqn I1 .can now be 
written as + .__ 

It is important to see, in eqns. 27 and 28, that the density .orr the crystal surface 
for any species p”, ~(a.,), can be expressed in terms of the density for a given species 
e’, ikee, (eqn. 27), and that the density for all species, x, can be expressed as a 
function of the density of the given species e’ (eqn. 28). It can be considered that 
eqns. 27 and 28 (which have been derived from eqn. 22) are an expression of the 
boundary condition at the top of the column or when s --f 0, which can be applied 
directly to eqn. 21. It should be noted that. coefhcients of any rerms in eqn. 21 do 
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not involve the variable s and that the shape of eqn. 21 is independent of the values of 
S. Hence, by substituting eqns. 27 and 28 into eqn. 21 and by introducing a new 
function 

eqn. 21 can be rewritten as 

(e’ = 1, 2, ___, e). Each equation in eqn. 30 is now concerned only with species e’ 
and is independent of the others; this can easily be solved, giving the general 
solution 

or 

(31) 

(31’) 

where F and Q are any functions. 
In usual practice, the width of the chromatogram is much larger than the 

width of the initial band of molecules at the top of the columns. Therefore, it would 
be a good approximation to consider that the initial band has an infinitesimal 
width 6L (= h/g) (see above). Upon introducin, v this approximation, the following 
remarks are necessary, however: it can now be considered that, in eqns. 27 and 28, 
the parameters x+<~., (or x*~~..,) and xceS, (or xtee,,) represent proportions of the 
HA effective surfaces on the top 6L of the column that are occupied by species e’ 
(or g”), in the initial state of the chromato_maphy and in the course of the devel- 
opment process, respectively. The same physical meanings should be conserved for 
these parameters in eqn. 30, where it should be recalled that the parameters x*(~), 
x L C2,, __., x*(e) are involved in the function dY,,,,/d;CCoS,. Thus, in eqn. 30, x*<~~) should 
represent the proportion of the HA effective surfaces on the whole column that is 
oFupied initially by species e’, or the initial mean density on the whole column. 
In order fdr x*~~., to have this physical meaning, calling x**~~,, [0 < x**~~,, < I] 
the density of species e’ in the interior of the actual initial band, and 4L the width 
of this band, xfceS, in eqn. 30 should fulfil the relationship 

where L, is the total length of the column and, for the practical calculation of the 
chromatogram, the approximation 

is used (see above); this means that the parameter x*<~., in eqn. 30 should have not 
only the intensive property (see above) but also the extensive meaning of the loaded 
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amount of species e’, expressed in units such that yl*(@., = 1 provided that the whole 
column is.iuitiahy saturated only .witb species- e’. In fact, the amount of molecules in 
solution is negligible compared with that of molecules adsorbed on the crystal surfaces 
in the interior of the initial band, in the case of the usual retained molecules, because 
this is the reason-why molecules are retained on-the column. The case of ndn-retained 
molecules is not important in practice, because, it is unnecessary to apply the 
mob&y gradient of competing ions for the elution of molecules from the column. 
Fur+&, the quantity x*~~., or keO, at the top (AL or SL) of the column decreases when 
the development process begins and this decrease must corresponds to the term -a~,~,, 
in eqn. 30; this means that the quantity xCp., must also have an extensive property. 
Thus, in eqn. 30, the quantity -~;c<p~,~~m - an? should represent the decrease in the 
amount of species e’ between the position L - dL and L (where L = s/g; eqn. 5) 
on the column when the molarity of competing ions increases from m to rn. + dm, 
or the amount passing through the position L within the time of the infinitesimal 
increase, dm, in the molarity. 

Similarly, the quantity ~teS,/L, l dL s h ows the amount of species e’ adsorbed, 
at time t, between the position L - dL and L on the column. The factor L, in the 
denominator of the term X&L,- dL is necessary in order for X(e*) to be expressed 
in the same units as x* (@,, (see above). On the other hand, the fundamental equa- 
tion, eqn. 7, was derived (see section A) by giving to xCg,, an intensive physical 
meaning of the density of molecules on the crystal surface (which is, of course, 
consistent with the physical mean& (J of this parameter in eqns. 27 and 28 ; see 
above). Hence, the quantity ~(o~, in eqn. 30 should also conserve both the extensive 
and the intensive properties; this is possible because eqn. 30 has a linear form. 

We must now find a boundary .condition that eqn. 31 or 31’ has to fulfil: 
eqn. 5 shows that when the slope, g, of the gradient of competing ions approaches 
zero, the value of s also tends to zero. In this instance, molecules must elute_at the 
initial molar&y, min, even though an extremely large volume of the eluent would be 
necessary. This situation can be considered as the boundary condition, which can be 
written as 

m = ml, (32) 

. I 
when s = 0. Under this condition, eqn. 31’ reduces to 

(33) 

which can be rewritten, by integration and rearrangement, as 

Now, the amount of species Q’ that elutes from a column of length L, when 
the molar&y of competing ions increases from m to m + dm, should be equal to 
the decrease iu the amount between the position L - dL and L or the amount 
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passing through the bottom, L, on the oolumn during the infinitesimal increase, dm, 
in the molarity, which, according td eqn. 30, should be -[~~e&&_.dnz (see above). 
This means that the ccintribution, f<d,,SS (m), of species e’. to the total .chromatogr&n 
of the mixture; when both the-length of the cohnnn and the slope :of- the-molar&y 
gradient are- given, -Le., when the parameter s is given, can be written -as 

where the extreme right-hand side was derived f&m eqn. 33’. Eqns. 34 and 33’ 
describe fd,.,.S as a function of m by using xteS, as an intermediate parameter. It is 
evident that eqn. 34 fuifils the conservation condition 

_a 

J fo,,, S(m)h = ;C;e,, 
mm 

(35) 

On the other hand, the quantity xte,,/L-dL shows the amount of species p’ 
adsorbed at tune t, between the position L - dL and L on a column of length L 
(see above), which can be rewritten as x&s - dm, because cLL = l/a -dV = I/g-b 
and gL 7 s (see eqns. 2, 5 and 6). This means that the amount of mokcules in 
solution in the last section of the column with thickness dL should be 

(see eqns. 3, 9 and 29), which must elute from the column between the molarity m 

and m + dm of competing ions. Hence, fce9,.s(m) can be written as 

(36) 

which, however, is different from eqn. 34; if eqn. 36 is substituted into the left- 
hand side of eqn. 35, its value becGmes generally less than the value of the right- 
hand side. When x’ >> 1, however, the dkcrepancy between eqns. 34 and 36 is 
negligible, and eqn. 30 or 21, in fact, represents the continuity equation of the flow, 
because the relationship I.? =.0(x’) should hold (see section C), and eqns. 15, 28 
and 29 show that the function Y,,,,(;dces,) increases very rapidly with increase in &Y, 
(when x’ > I), which means that 

(37) 
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It is evident that both the tist and the second derivatives of fhe function 
Y tea1 increase rapidly with increase in ~~a.,, when Y,,., increases rapidly. In eqn. 37, 
the left-hand side and the intermediate terms can be obtained by integrating the 
intermediate and the right-hand side terms, respectively. As these terms increase 
rapidly with increase in x <@,, (see above), only the maximum values of the iutegrands 
are of importance for rkspective iutegations; thii is the reason why eqn. 37 is obtained 
(c$, eqn. A3 in Appendix I). 

Finally, with small loads when N(x) tends to unity (see section B) and when 
Y<e&e*3 and dyCa*&*Jd~~e*~ tend to xc@., and unity, respectively (see eqn. 29, 
eqn. 33 or 33’ reduces to 

or 

(38’) 

which no longer involves the parameter x~~~,_ This means that the band of molecules 
on the column continues. to have an infktesimal width during the development 
process of the chromatography, and that the elution molarity, m, of the sharp band 
of species g’ is described by eqn. 38 or 38’, as a function of S, independent of the 
coexistences of the other species. It should be noted that eqns. 38 and 38’ are iden- 
tical with eqns. 12 and 15, res@ctively, in an earlier papep, (in which m and Q, 
are written as melu and q), and that both eqns. 12 and 15 in ref. 4 were derived 
without using the assumption of x’ >> 1 (~5, sections E and F)_ 

(E) The case when x’ has any value 

In this section we show that, in gradient elution, assuming that there is uo 
longitudinal diffusion of molecules on the HA column, Wilson’s equation is valid 
for molecules with any x’ values or any dimensions, and that the result obtained in 
section D is valid for any _molecules. 

For this purpose, it is necessary to specify the physical meanings of both 
Wilson’s and DeVault’s equations, beginning with the general continuity equation 
of the flow of molecules on the column; this equation can be written as 

(e’ = 1, 2, . . . . e), where t is time: Q<a*, is the density or the amount of species 2’ 
in the interstices, including the crystal surface, of the column section, which is defined 
as 
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and is related to the parameter B,eS, by the relationship 

B 
&; 

W’, = - R (41) 
ce9 

vceS, is the mean velocity of the flow of molecules of species e’, or v&2<e*, re- 
presents the mean flux of spec& e’ on the column; and D is the diffusion (or the dis- 
persion) constant of molecules on the column, v~~~&?~~~, - Dgrad C<e*, representing, 
therefore, the total flux of species e’. It should be noted that the definition of Q<e*j 
in this paper is different from that of J2 (= 1 f C/x) in an earlier papeld. 

We can show, at least in HA chromatography, that D does not necessarily 
bear the subscript p’ even when molecules are heterogeneous in dimeasions and/or 
shape. Thus, the increase in the width of the chromatographic peak with an increase 
in the column length is observed in the gradient chromatography of lysozyme with 
smal! loads on the HA column I7 - this must be due to the diffusion of molecules in , 
the interstitial liquid on the column, because the molarity or the activity of com- 
peting ions is higher in the rear than in the front part of the chromatographic peak 
in gradient elution, and it is impossible for the RF value in the front part of the 
peak to be larger than the value in the rear part, unless there is molecular diffusion. 
This means that an increase in the width of the chromatograpbic peak with an in- 
crease in the column length is impossible without molecular diffusion’, while the 
shape of the cbromato,w is not deformed, nor does the elution position of mol- 
ecules change when the flow-rate is varied (see Introduction). These two facts in- 
dicate that the dispersion of molecules on the column is not due to thermal diffusion 
but to the heterogeneity in the flow on the colmmP, and that D is independent of 
the properties of the molecule; this leads to a further conclusion that D should be 
proportional to the volume of the solution or the solvent that elutes within unit 
time, dV(t)/dt, because, if dV(t)/dt or the flow-rate of the solvent increases, the het- 
erogeneity in the flow or the dispersion around the mean flow must increase pro- 
portionahy. Hence, we obtain a relationship 

where D’ is the proportionality constant. 
In the quasi-static process of the flow, the assumption of which is justified 

by eqn. 42 (see below), it is reasonable to consider that the mean rate, vte,, .of the 
flow of species e’ is expressed as 

1 dV(O R 1 V[@., = - - ~ - dV(t) B 
a dr F(e’) = a - ~ - dt (e-1 (43) 

where RF,,*, represents the mean R, value for species e’ and l/a.dV(t)/dt represents 
the flow-rate of the solvent at time t. Now, it is possible to rewrite eqn. 39, by 
using eqns. 40-43, as 
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@ = 1,2, . . . . e). It is important to note that time, t, is not involved in eqn. 44, 
which is due to eqn. 42. In other words, it is eqn. 42 that justifies the treatment of 
HA chromatography on the basis of the equilibrium theory. 

Now, in order to simplify eqn. 44, let us consider the following fi~o assump- 
tions: (1) that the diffusion of molecules in solution in the interstices of the column 
is negligible, and (2) that the diffusion of molecules in solution is carried out in- 
dependently of the interaction with crystal surfaces. This assumption is similar to 
a Bragg-Williams approximation. It should be noted, however, that the dispersion 
of molecules in the interstitial liquid is not due to thermal diffusion but to het- 
erogeneity in the flow (see above). Assumption (1) can be expressed as 

D or D’ = 0 (45) 

If eqn. 45 is substituted into eqn. 44, DeVault’s equation (eqn. 4) is obtained, .. 
which can be rewritten as 

(e’ = 1, 2, . . . . e). It should be noted that eqn. 46 still conserves the property as 
the general continuity equation of the flow (see section A). 

Assumption (2) would mean that the distribution of molecules in solution 
follows Fick’s second law, or we have 

. 
we,, 

at- 
D . zGe9 = o , 

l?L2 

which can be rewritten, by using eqn. 42 as 

(47) 

(47’) 

If eqn. 47’ is substituted into eqn. 44, Wilson’s equation (eqn. 1) is obtained, which 
can be rearranged, by using eqn. 3, to 

a 1 4e9 
1 _ B,~,, _ X(e*) 1 

aL 
a%ce9 o $-a--= 

av (48) 

@’ = 1, 2, .._, e). 
Eqn. 48 means that, provided the diffusion of molecules in the interstitial 

liquid on the column occurs independently (cqn. 47 or 47’), then the chromatographic 
mechanism is also independent of the molecules in solution, except for the fact that 
the mean flux or the mean rate of the migration of molecules on the column -(the 
fmt term on the left-hand side of eqn. 48) is governed by the partition, &e*), of 
the molecules in solution, so that the chromatography is carried out independently 
of the longitudunal diffusion of molecules on the column, following eqn. 48. Let US 
now introduce assumption (1) or eqn. 45, -which leads to the conclmion, that provided 
there is no longitudinal diffusion of molecules on the column, the chromatogram 
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can be calculated by using eqn. 4s. In fact, the only way in which the chromato- 
graphy can be carried out without the effect of longitudinal molecular diffusion 
(although it cannot be performed exactly so in practice) is that the mechanism of 
the chromatography is independent of the molecules in solution. Here, it should be 
emphasized that assumptions (2) and (l), i.e., eqns. 47 or 47’ and eqn. 45, have 
been introduced, in this order, only for the purpose of specifying the physical 
meaning of eqn. 48. 

Eqn. 48 is, in fact, selfconsistent with the conclusion, which is involved in 
itself, that the chromatographic mechanism is independent of molecules in the inter- 
stitial liquid on the column (see above), in gradient elution. In this instance, eqn. 
48 is transformed into eqn. 7, or into 

(@’ = 1, 2, _..) e), where the first term on the left-hand side still conserves the phys- 
ical meaning of (the divergence of) the mean flux of molecules on the column 
lbecause s = gL (eqn. 5) and g is constant], while the second term is now related 
only to the molarity of competing ions, as the force which drives molecules out of 
the crystal surface, and no longer to the interstices of the column. This can be com- 
pared with stepwise elution. In this instance, it can be considered that eqn. 48 is self- 
inconsistent with the physical meaning of the independence of the chromatographic 
mechanism from the molecules in solution, because the second term on the left- 
hand side of eqn. 48 is still related to the interstices of the column; the situation 
such that the change, &,,,, with time, of the amount of molecules on the crystal 
surface is directly related to the change, Sv, also with time, of the elution volume 
of the solvent, i.e., to the dimensions of the interstitial volume of the column, but 
that it is independent of the amount of molecules partitioned in the interstices, 
evidently involves a logical inconsistency in the quasi-static treatment of the chro- 
matographic process. A direct proof that Wilson’s equation is not valid in stepwise 
elution’will be given in section F for small loads, also with a direct proof that Wil- 
son’s equation, in fact, describes correctly the gradient elution process on the HA 
column, provided that the longitudinal diffusion of molecules on the column is 
negligible. 

It should be emphasized that eqn. 49 does no longer represents the conti- 
nuity equation of the flow, and that eqn. 49 does not express the conservation of 
the amount of molecules in the interstices, including the crystal surface, of the column 
section, because eqn. 49 is no longer concerned with molecules in the interstitial 
liquid on the column (see above). In spite of this fact, in order to derive eqn. 27 
(or 2S), which is a boundary condition for Wilson’s equation, eqn. 21, when s + 0, 
eqn. 22 has been used, which is concerned with molecules in solution or the interstitial 
liquid on the column. When s + 0 or at the beginning of the chromatography, 
however, virtually all molecules in the col-urnni section are adsorbed on the crystal 
surfaces in the case of the usual retained molecules (see section D), or condition (1) 
in section A holds; this means that, when s + 0, Wilson’s equation coincides with 
GeVault’s equation, and represents the continuity equation of the flow (see section 
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A). It should also be noted that, although eqn. 49 does not express the consevation 
of molecules in the section of the column (except in the extreme condition; see above), 
the conservation of molecules can be expressed, in the case of retained molecules 
(see above), by using the second term on the left-hand side of eqn. 49, as 

where x*<~,, is the amount of molecules of species g’ loaded on the column, and 
-$~~.,/dm-dm represents the amount of molecules passing through a position L 
on the column when the molarity of competing ions increases from m to pn + dm 
(c$, section D). Eqn. 50 coincides with eqn. 35 if L represents the total length of 
the column, and if the function fCe~,,&z) in eqn. 35 is defined by eqn. 34. Hence, 
the theoretical chromatogram for molecules with any values of x’ can be. calculated 
with eqn. 34, assuming that there. is no longitudinal diffusion of molecules on the 
column. Eqn. 36 is not valid, however, except when x’ B 1 (see section D), because 
eqn. 36 has been derived both on the basis of eqn. 49 and the assumption that it 
is molecules “in solution” in the last section of the column that elute from the column 
(see section 0). 

Finally, in order to understand better the physical meaning of eqn. 49, the 
following hypothesis would be useful: eqn. 49 or 48 describes the chromatographic 
process provided that there is no diffusion of molecules (see above)_ If there is no 
difiusion, eqn. 45 should hold, while we have always eqn 44. NO&T. if eqn. 45 is 
substituted into eqn. 44, eqn. 46 is obtained, which is different from eqn. 48 or 49, 
the equation as the starting point of the logic. This inconsistency comes from the 
fact that eqn. 45 (unless introduced after eqn. 47 or 47’ has been introduced: see 
below) is already incompatible with eqn. 47, the basis of eqn. 44 (see above). In 
fact, eqn. 42 has been derived on the basis of the experimental conclusion that the 
thermal diffusion (denoted by D,) of molecules is negligible compared with the dif- 
fusion (0) which is due to the heterogeneity in the flow on the column. In order 
for this reIationship between D, and D to be maintained even when D is infinitesimal, 
D, should also be iruinitesimal, which would preclude the existence itself of the solu- 
tion, or, at least, the equilibrium between the adsorbed phase and solution, because 
it is the molecular dilfusion (from which the longitudinal diffusion is inseparable) 
that maintains the equilibrium; this would mean that DeVault’s equation, eqn. 46, 
is inconsistent with eqn. 42, the equation justifying the treatment of the chromato- 
graphy on the basis of the equilibrium theory (for further discussions, see section 
F-2). It should be noted that eqn. 47 or 47’ used for the derivation of eqn. 48 or 49 
is not incompatible, in the above sense, with eqn. 42. Further, eqn. 45 is no longer 
incompatible with eqn. 42 if it is introduced after eqn. 47 or 47’ has been introduced, 
because, in this instance, eqn. 45 is used only for the purpose of specifying the 
physical meaning of eqn. 49, which is no longer concerned with molecules in the 
interstitial liquid on the column (see above)_ 

(F) Small loads: validities of Wilson’s and De Vault’s eqmtions in gradient and stepwise 
elation 

In this section, we show that when the elution of molecules is carried out 
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with a gradient of competing ions, Wilson’s equation is valid for the description of 
the chromatographic process, but that DeVault’s equation is not valid; in stepwise 
elution, it is DeVault’s equation, and not Wilson’s equation, that is valid. Here, 
we always consider small loads. 

(-r) Gradient elution. We examine first the validity of Wilson’s equation. For 
this purpose, it is convenient to rewrite eqn. 49 as 

as 0 =- a;cce#m = he*) 

am Xce7 axce.,i as 1 - &e7 
= qccep,-‘(Q7’m + 1)“’ (50 

where it should be noted that B&l - B<e*, is independent of both s and X(e,, with 
small ioads ; the extreme right-hand side of eqn. 51 has been obtained by using eqn. 
9 taking into account the fact that HoI) = 1 with small loads (see section B)_ It 
can be considered that the extreme left-hand side of eqn. 51 represents the change 
of the position L of the part of the molecular band with density Xre*, on the col- 
umn, as a function of the molarity m of the competing ions, because s = gL (eqn. 
5) and the slope, g, of the gradient of the ions is constant. If the initial band of 
molecules on the top of the column has an infinitesimal width, the band maintains 
the infkitesimal width during the chromatographic process, because the RF value in 
the front part of the band is, in general, smaller than the value in the rear part 
(see section _F); this means that s no longer depends on x<e*), and that eqn. 51 reduces 
to 

ds B -= ce7 
dm 1 - B<e,> 

= qces,-‘($m -+ 1)X’ (52) 

which describes the change in the position of the inllnitesiknal band of molecules as 
a .function of m. Eqn. 52 is also obtained if eqn. 38 is differentiated with respect 
to m. 

Now, when adsorption chromatography can be described as a quasi-static 
process, it is possible to consider, in general, that the ratio, RF, of the mean migra- 
tion rate _of the solute to that of the solvent is equal to the partition, Bto.,, of the 

;solute in solution or the mobile phase, which is shown in eqn. 43 [where RF is written 
as R,,e*,]. It can also be considered that the gradient of competing ions migrates 
with the same rate as that of the solvent, at least in HA chromatography. In fact, 
it is observed experimentally that the actual slope of the gradient is equal to the 
slope that should be realized provided that there is no adsorption of the ions on 
the crystal surface*; this means that, even though the delay of the gradient occurs 
immediately after the gradient is introduced because of the adsorption of the ions, 
any part of the gradient migrates with the same rate after the initial delay, and that 
this rate is equal to that realized, provided that there is no adsorption of the ions 
on the crystal surface because, in order for different parts of the gradient with dif- 
ferent molarities, which should involve different proportions of the ions interacting 
with the crystal surface, to migrate with the same rate, there must apparently be no 

* See, for instznce, Fig. 1 in ref. 6 (or Figs. 2A and 6 in ref. 17), in which three Serb of 
experiments where the slopes, g<,,+, of the gradient, provided that there is no adsorption of the 
competing ions (K’) should be 1.1775 - 10e3, 4.239 - lo-+ and 3.5325 - 10e5 M/cm are shown. 
The experimentaily observed values of go+, are 1.2-1.4 - 10-3, 4-O-4.9 - lo-’ and 3.5-3.8 - lo-' 
M/cm, respectively, which are virtually identical with the thexxetical values. 
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interaction of the ions with the crystal surface, which is possible only if the molar&y 
of the ions is high enough, except just at the beginning of the gra.dient, for most 
proportions of the ions in the column section to be in solution i.e., if a molar&y, 
m’, exists with such properties (1) that 0 -=I m’ - mi, 6~ m - m’, where m is the 
elution molarity of the solute, and (2) that it is high enough for &oSt proportions 
of the ions in the column section to be in solution (cf., Discussion in ref. 7). Now, 
if the width of the initial band of molecules on the tap of the column is very small, 
and if there is no longitudinal diffusion of molecules on the colu11111, the width of 
the band should always be small during the development process of the chromato- 
graphy (see above), and the mean rate of migration of molecules on the column 
should be equal to the rate of migration of the molecular band itself (see above). 
Hence, if a conclusion such that the ratio (which can also be defined as RF; see 
above) of the rate of migration of the molecular band (with an infinitesimal width) 
to that of the gradient of competing ions is equal to the partition, &,), of molecules- 
in solution, is derived from eqn. 52, then it is proved that eqn. 52, Le., eqn. 49, 
describes correctly the chromatographic process, provided that there is ILO longitudinal 
diffusion of molecules on the column. 

m 

Fig. 1. Schematic representation of the development of molecules on the column when a linear 
molarity gradient of competing ions is applied. For details, see text. (Reproduced from ref. 4). 

The above conclusion is, in fact, derived from eqn. 52 if eqns. 4-11 in an 
earlier papefi are followed (almost) in the other direction_ Thus, calling L and m 
the coordinates that indicate the distance from the top of the column and the mo- 
larity of competin g ions, respectively, & and Lz the distances from the top of the 
column of the molecular band and the beginning of the gradient, respectively, and 
m ciu and m, the values of m when L = L3 and at the top of the column, respec- 
tively (ze Fig. 1), then we evidently have 

me1u - min -& - L-a = 
m. - mi, LZ 

(53) 

m0 - min = gL (54) 

s=& (55) 
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and. 

(56) 

By substituting eqn. 54 into eqjn. 53, and by dXerentiating with respect to time, t, 
we Obtain 

1 dfhl a2 &’ . 
-- 

--dt=dt dt kT 

which can be r&ranged to 

(57) 

Eqn. 57’ becomes, with eqns. 55 and 56 

hltl 1 =-- 
ds RF l 

which can be rearranged to 

cls RF : dlllclll= 1 - RF 

(571 

(58’) 

The physical meaning of mCl, in eqn. 58’ is identical with that of m in eqn. 52. 
Hence, it can be concluded, by comparing eqn. 58’ with eqn. 52, that 

RF = Bar, (59) 

and that Wilson’s equation, eqns. 52 or 49, describes correctly the chromatographic 
process, provided that there is no longitudinal diffusion of molecules on the column. 

‘We now examine, the validity of DeVault’s equation_ Eqn. 46 is transformed, 
in gradient elution, into 

(e’ = 1, 2, .._, e). With small loads, Bye., is independent of both s and J&., and 
instead of eqns. 51 and 52, we have 

and 

a%?‘,/am B 
1 - = 

qe.,/as (O” = 1 + q@&?‘m + 1)-x’ 

ds - = Bee., = 1 
.d.m 1 5 q&g+2 + I)-“’ 

Therefore, by comparing eqn. 62 with eqn. 58’ 

03) 

(62) 

RF 
1 -RF = Bo9 (63) 
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is obtained, which is inconsistent with the basic equation for the equilibrium theory, 
eqn. 43, Le., eqn. 59. In fact, eqn. 63’ shows that the value of RF moves only in 
the range 0 < RF < 0.5, because 0 < I+,., , < 1 which, evidently, is an unreasonable , 
conclusion (see also below). 

The validity of Wilson’s equation, eqn. 52 or 49, is, in fact, ‘verified ex- 
perimentally, because the validity of.eqn. 38 or 38’, which is obtaineci by integrating 
eqn. 52 and which is identical with eqn. 12 or 15 in ref. 4, is verified experi- 
mentally’~7J. On the other hand, the fact that DeVault’s equation is unreasonable 
is demonstrated clearly by the experiment with TZ phage (presumably) with an 
extremely large value of x’; Fig. 1E in ref. 17 shows that the elution mdlarity, with 
small loads, for TZ phage particles is independent of both the column length and 
the slope of the gradient of competing ions. It is evident that, if this result is plotted 
on an (m, log s) plans (as in Figs. 2, 4. and 5 in ref. 4 and Figs. A7 and AS in 
Appendix IV in ref. S), then a straight line parallel to the ordinate or the log s axis 
is obtained,- which indicates that &/~ITZ = co. Eqn. 62 shows, however, that the 
maximum value of ds@z is unity, because the maximum value of BCo,, is unity, 
while, according to eqn. 52, ds/dm tends to infinity when B,,., tends .to unity. In 
earlier papersglxo, it was shown that, when X’ is large and when the amount of 
molecules in the column section is small, the value of Bc,,,, with an increase in the 
activity or the molar&y m, makes a sharp transition from 0 to 1. Therefore, ac- 
cording to eqn. 52, and calling m” the value of m at which there is the sharp transi- 
tion of Bee,,, the value of d.s/dnz must also make a sharp transition from 0 to 03 at 
m = m”; this means that the value of s, which is obtained by integrating eqn. 52, 
is zero and inGnity when m -c m” and m > m”, respectively, because .s = 0 when 
111 = 1111, (see section 0) and, in order for this result of the integration to be ob- 
tained, the curve that is traced by the variables m and s must be sudh that s = 0 
when m < m” and m = m” when s > 0. Therefore, the curve traced by the variables 
~tl and logs must be a straight line at m = m” parallel to the log .s axis, and rn’ 
must represent the elution molarity of the solute. Hence, the validity of eqn. 52 has 
again been demonstrated. 

Finally. it should be noted that eqn. 62 tends to ein. 52 when -~~~~-,(#rn t 
I)-=’ >> 1 or when I&, + 0, i.e., when condition (1) in section A holds, and that 
it is only in this condition that DeVault’s equation is valid, unless x’ >> 1 [in an 
earlier papep, the gradient elution on the HA column is treated on the basis of 
DeVault’s equation. This is done, however, only in the condition where DeVault’s 
equation coincides with the Wilson’s equation, i.e., under condition (1) in section 
A ; c$, Appendix II] ; if x’ > 1, DeVauh’s equation always reduces to Wilson’s 
equation [condition (2) in section A ; see section CJ. 

(2) Step,vise elation. We consider first Wilson’s equation. Eqn. 4Scan be re- 
writtenas 
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because B&l - I&, is independent of both L and xce,,. Similarly, as in gradient 
elution (see subsection I), if the initial band of molecules on the top of the column 
has an inikitcsimal width, the band continues to have this infinitesimal width during 
the development process of the chromatography, and eqn. 64 reduces to 

dL B 

Q-T= 
<e’> 

1 - B,,,, = 4te’) 
-1 . (tp’m + 1)X’ 

because the RF value in the interior of the band should be constant. The extreme 
left-hand side of eqn. 65 represents the ratio of the rate of migration of the infhrites- 
imal band. of the solute, dL/dt to the rate of migration of the solvent, I/a-dv/dr, 
Therefore, we can write 

dz 
+=a-- 

dV 

and we have 

RF = &*, 
1 - %, 

(67) 

which is inconsistent with eqn. 43 or 59, and shows that RF varies between 0 and 
03, because 0 G B,,,) , < 1. This is an unreasonable conclusion. An explanation for 
the reason why Wilson’s equation, eqn. 48, is not valid in stepwise elutfon was given 
in section E. 

We now consider DeVault’s equation. Eqn. 46 can be rewritten as 

because Bo,, is independent of both L and Q,,,. For an infinitesimal band, eqn. 
68 reduces to 

which, with eqn. 66, shows that the RF is equal to the partition B,,.,, or eqn. 59 is 
obtained; this is the condition for the quasi-static process of the chromatography 
(see above; cJ, eqn. 43). Hence, it can be concluded that the chromatographic process, 
provided that there is no londitudinal molecular diffusion, is correctly described by 
eqn. 69 or 46. 

In section E, it was mentioned that the assumption, eqn. 45, which is neces- 
sary for the derivation of DeVault’s equation, eqn. 46, is inconsistent with eqn. 42, 
the equation that justifies the quasi-static treatment of the chromatography and from 
which eqn. 44, the basis of DeVault’s equation itself, is derived_ Ln spite of this 
inconsistency, DeVault’s equation describes correctly the stepwise elution process 
(see above); it is evident that, provided the migrating band of molecules has an 
infmite width, the effect of the iongitudinal diffusion of molecules on- the column 
‘is cancelled out in the interior of the band, and that eqn. 45 apparently holds. It 
would, therefore, be possible to imagine that the band with an infinitesimal width 
that has been considered above (or even the band with a link width; cf., Ap- 
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pendix II) is part of the band with an infinite width, and that the migration of this 
part can be described by DeVault’s equation, eqn. 46. Similarly, it would be pos- 
sible to consider that the actual column is part of the imaginary column with an 
itite length. It is, in fact, possible to assume the band with an in&rite width in 
stepwise chromatography, because the RF value is constant in the interior of the 
band (at least for small loads) and the width of the band is maintained constant 
during the chromatographic process, provided that there is no longitudinal diffusion 
of molecules; this enables us to assume, during the whole process of the chromato- 
graphy, the band with a width that is larger than any given constant value, i.e., 
the band with an in&&e width. In gradient elution, however, the width of the band 
decreases, in general, with the chromatographic process, provided that there is no 
longitudinal molecular diffusion, because the RF value in the front part of the band 
is smaller than the value in the rear part (see section E). Therefore, it is only at the 
beginning of the elution process that we can assume the band with a width larger 
than any given value; this means that it is only near the beginning of the chro- 
matographic process that DeVault’s equation is valid as an approximation. Actually, 
the relationship gCeS, - (q’m t I)-=’ z+ 1 holds near the beginning of the development 
process, for the usual retained molecules, and DeVault’s equation coincides with 
Wilson’s equation (see subsection I ; cf., Appendix II). It is evident that, also in 
stepwise elution, DeVault’s equation coincides with W&on’s equation if qce*) -(@m f 
l)-=’ >> 1 or if Bce*j + 0 [condition (1) in section A; cf., eqns. 69 and 651. 

RESULTS OF NUMERICAL CALCULATIONS OF THEORETICAL CHRIMATOGRAMS 

These results will be given in a subsequent paper’* together with results of the 
analysis of experimental chromatograms of tropocollagen. The results obtained when 
x’ >> I are almost the same as those obtained in an earlier papeP (see also Appendix I). 

DISCUSSION 

The fact that there is a iongitudinal dispersion of molecules on the HA col- 
umn, but that the chromatography is carried out independently of the flow-rate, 
indicates that the molecular dispersion is due to the heterogeneity in the flow, and 
that the effect of thermal diffusion is negligible (see Theoretical se&ion, E). It can 
be considered, therefore, that the rate, relative to the mean rate, of the migration 
of the solute due to te heterogeneity in the flow, is, on average, much higher than 
the rate due to thermal diffusion if the two rates are measured over a range much 
wider than the mean interval among HA crystals on the column*; this-must be due 
to the fact that the thermal diffusion of the solute is blocked by molecules of the 
solvent, but that the diffusion due to the heterogeneity in the flow is not interrupted. 
If the two rates are measured over a range comparable to the mean interval among 
I-IA crystals, however, the mean rate, relative to the mean flow, of the migration 
of the solute due to thermal diffusion must be much higher than the rate due to 
the heterogeneity in the flow, because the thermal motion of the solute must be 

* “Range” = range which involves the system (as a part of the interior of the column) that is 
used to measure the two rates; “interval” = interdistance between neighbouring HA particles 
packed on the column. 
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blocked only slightly by molecules of the solvent in a small range.This molecular model 
of sclution shows qualitatively that a virtually instantaneous equilibrium is attained be- 
tween the adsorbed phase and solution, or that the classical assumption (a) in the Intro- 
duction is realized, justifying the quasi-static treatment of the chromatography; this can 
be compared with the method of the justification made under Theoretical, section E. 

Another approximation that is used in the present theory is identical with 
the .classical assumption (b) in the Introduction. It is important to note, however, 
that the processes through which this approximation, i.e., the ideal state of no 
longitudinal molecular diffusion, is reached from the actual state of molecular dif- 
fusion are fundamentally different between the two systems (1) when time t is trans- 
formed into elution volume, V (stepwise chromatography) and (2) when time t is 
transformed into molar&y, M, of competing ions (gradient chromatography) (see 
Theoretical, sections E and -F). 

It is interesting that the process of increasing the value of x’ to infinity while 
keeping-the value of &es, constant (see Theoretical, section C), resembles the process 
in which the quantum effect decreases with an increases in the dimensions of the 
system from a microscopic to a macroscopic scale. In fact, the value of &, can 
change continuously when x’ tends to infinity (see eqn. 16). Further, the number 
of possible orientations of a molecule on the crystal surface must approach Unity 
or the molecule can change its orientations continuously when x’ tends to i&n&y 
and at least when the distribution of adsorption groups on the molecular surface 
is random. It should be recalled, however, that in earlier paper&l6 we ahvays assumed 
a &rite number for the number of orientations of the molecule on the crystai sur- 
face, because it is actual molecules with finite dimensions that we consider, even 
though the approximation of x’ --f 00 is sometimes introduced for convenience_ 

Most conclusions in this paper obtained for rod-like molecules are valid for 
molecules with any shapes, because it is only the function H(x) (eqn. 15) that de- 
pends on the molecular shape. Particularly when the adsorption of molecules occurs 

on C sites on the (i, c’> and the (g, F) surfaces of the HA crystal’, it can be con- 
sidered that the function H(x) obtained for rod-like molecules can be applied to 
molecules with any shapes, because the coordination number, z, for a C site is 2 
(see Fig. 2 in ref. 7) and a molecule, with any shape, adsorbed on these crystal 
surfaces must interact, in many instances, with other molecules by using mainly both 
sides of the molecular surface, which is the general case of rod-like moleculesg. 

In Appendix I, some properties of HA chromatography when x’ > 1 and in 
gradient elution are discussed. In Appendices I and II, relationships of the present 
theory with theories developed in earlier papers6*16 are considered. 

APPENDIX I 

Here we discuss some properties of HA chromatography when x’ > 1, and 
consider the relationship of the present theory with the theory developed in an earlier 
paperIs. 

Under the Theoretical, section E, it was mentioned that Wilson’s equation, 
eqn. 49, in general does not represent the continuity equation of the flow. When 
x’ >> 1, however, eqn. 49, i.e., eqn. 21, acquires the property of the continuity equa- 
ion. In this instance, eqn. 25 also expresses the conservation of the amount of 
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molecules in the top section, 6L (= &r/g), of the column. Now, by substituting eqn. 
29 into eqn. 25, we obtain 

(e’ = 1,2, .._, e). Each equation in the simultaneous equations in eqn. Al is now 
concerned only with molecular species e’. and is independent of the other equations; 
this can easily be integrated to give 

where it should be noted that the integration of eqn. Al has no physical meaning 
unless it expresses the conservation of the amount of molecules, or unless x’ z% 1 
(see above). If x’ is not large, eqn. Al is not concerned with molecules in the 
interstitial liquid on the column, and it is only the change, -dX,.,/dm, itself of 
the amount of species e’ on the crystal surface, with increase in molarity 172 of 
competing ions, that has a physical meaning; in fact, the chromatogram- fceS,.,(nz) 
can be calculated only by means of eqn. 34, i.e., it can be expressed only in terms 
of the quantity -(ax&&z),, and not by eqn. 36 (see Theoretical, section E). 
Under Theoretical, section D, it was mentioned that, when x’ z$ 1, the function 
Yce,, (;ct& increases very rapidly with increase in x<s,,. Therefore, the integrand of 
the integral of the right-hand side of eqn. A2 or the quantity [Y,,, (x~~,,)]-~ in- 
creases very rapidly with decrease in ;~c~,,_ Hence, only the maximum value of the 
integrand in the range [;c<@,,, xSteS,] is of importance’ for the integration, and we 
have _ 

(A3) 

As we have a similar relationship between the function Yco,, (;c& and its 
derivative, which is shown by eqn. 37, it is possible to rewrite eqn. A2 as 

J 
ml* 

(A4) 

Eqn. A4 can be considered as the boundary condition. that eqn. 31’ has to fulfil 
when s + & (-+ 0) (see eqn. 24), under which eqn. 31’ becomes 

which is the same as eqn. 33. It is important to note that eqns. A5 and A4 are 
identical except for the dikference between s and 6s; this means that the partial 
differential equation eqn. 21 or 30 reduces to the differential equation eqn. 25 or 
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Al, with only one variable m, when x’ > 1; this leads to the conclusion that, when 
_x’ z+ 1 and at least when a band with a virtually infinitesimal width is formed 
initially on the top of the column (see Theoretical, section D), almost the same chro- 
matogram should be obtained, independent of the value of s, Le., the column length, 
L, and/or the slope, g, of the molarity gradient of competing ions (see eqn. 5), 
provided that the amount of molecules loaded per unit packed volume of the 
crystals -on the column is the same, and that there is no longitudinal diffusion of 
molecules on the colt. 

Under Theoreti&l, section D, we mentioned the process through which eqn. 
25 had been derived. Eqn. 25 or Al cau also be derived through another process 
if x’ > 1. Thus, when the slope, g, of the molar&y gradient tends to an infinitesimal 
value, s tends to 6s and the width of the chromatogram must become much larger 
than the total length of the column, i.e., the total interstitial volume of the column 
must be much smaller than the total volume of the eluent in which macromolecules 
are involved (provided that there are repulsive interactions among molecules on the 
crystal surface; see Theoretical, section B). This means that the amount of molecules 
that exist in the interstitial liquid on the column, at time t, must be virtuahy equal 
to the loss of molecules from the column when a solution with the same volume 
as that of the column interstices is eluted, with an infinitesimal increase, dm, in 
the molarity of competing ions; this amount can be written as 

which can be shown in a similar manner to the derivation of eqn. 36. Further, the 
loss of molecules from the column must be equal to the loss, -d;Cce,,, of adsorbed 
moIecules from the crystal surfaces, because when x’ z+ 1, the change, with change 
in the molar&y, m, of competing ions, in the total amount of molecules in a section 
of the column is due only to the change in the amount on the crystal surfaces 
(see Theoretical, section C). Hence, eqn. Al is obtained. It should be emphasized 
that this method for the derivation of eqn. Al is valid only when x’ > 1. It should 
also be noted that, unless x’ >> 1, eqn. A2 cannot be a simple boundary condition 
for eqn. 31’) because we no longer have eqn. A3 or eqn. 37 ; in fact, unless x’ > 1, 

the integration of eqn. Al, giving eqn. A2, has no physical meaning (see above). 
Finally, the theory developed in an earlier papeP for the case when x’ > 1 

is based on the differential equation, eqn. Al, or eqn. 4 in ref. 16. The approxima- 
tion, eqn. 7 in ref. 16, which is derived from the approximation 

is also used. However, all of the results of the calculation of theoretical chromato- 
grams obtained in ref. 16 are almost identical with those obtained on the basis of 
the present theory, when x’ > 1. 

APPENDIX II 

In an earlier pap&, a theory of HA chromatography with small loads, in 
which the effect of the longitudinal diffusion of molecules on the column was partially 
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taken into account, was developed for both gradient and stepwise elution (for the 
latter, see Appendix in ref. 6). Here, we consider the relationship of this theory 
with the present theory. 

Wilson’s equation, eqn. 49, which is generally valid in gradient elution provided 
that there is no longitudinal diffusion of molecules, can be rewritten; for small 
loads, by using eqn. 9 and by taking into account the fact that the relationship 
HQ) = 1 hold s with small loads (see Theoretical, section B), as 

the general solution of which can be written as 

(A7) 

where P is any function. In ref. 6, it was mentioned, however, that if only the 
interior of a thin enough section of the column is considered as the system, eqn. 
A7 [in ref. 6, eqn. 60 here (i.e., eqn. 9 or 12 in ref. 6) is considered instead of eqn. 
A7. These two equations are identical, however, near the beginning of the develop- 
ment process (see Theoretical, section F-2) or in the experimental condition which is 
treated in ref. 6 (see below)] or the differential equation that describes the develop- 
ment of molecules on the column provided that there is no longitudinal molecular 
diEusion is not valid, because it is the random motion of molecules that governs 
in the small region on the column. In fact, it is impossible for a thin section of 
the column to be divided into a large number of sub-sections through which the 
transport of molecules is carried out virtually in a single direction_ .With small 
loads, the initial band on the top of the column has a small width. However, when 
a molarity gradient of competin g ions is applied, the difference in molarity between 
the two sides of the column top section initially occupied by molecules is also small; 
this means that the width of the molecular band broadens immediately after the 
development process begins (with retained molecules), and that eqn. A7 becomes 
valid6. Similarly, if the slope of the gradient of competing ions is very small, the 
differences in conc%ntrations of both the ions and the sample molecules, in the 
interstices at the top and the bottom of the column itself, are always small during 
the chromatographic process, and the width of the chromatogram becomes much 
larger than the height of the column6. In fact, even if there is a slight difference in the 
molecular concentrations between the interstices at the top and the bottom of the 
column, provided that there is no molecular diffusion, there must be no difference 
in molecular concentration because of molecular diffusion, which means that eqn. 
A7 is also not valid under this extreme experimental condition. Further, it can be 
considered that the loss of molecules from the thin section at the top of the col- 
umn in which molecules were initially adsorbed, and the loss of molecules from the 
column itself when the slope of the gradient of competing ions is very small, are 
virtually identical with the total amounts of molecules in the interstitial liquids in 
the column top section and in the column itself; tbis can be considered as the 

boundary condition that eqn. AS has to fulfil when s -+ 0 (and when m > min), 
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because s tends to zero both when the column length, L, and the slope, g, of the mo- 
la&y gradient of competing ions tend to zero (see eqn. 5), and the width of the 
chromatogram is much larger than the width of the initial band and the length of 
the column. In fact, Wilson’s equation expresses the conservation of the amount of 
molecules kr the column section when s + 0 for retained molecules (see below). 

Near the beginning of the development process or when the column is not 
so long, the relationship 

$e’) (q’m + l)-X’ > 1 (A9 

should hold for retained molecules, and only a small proportion of molecules in 
the column section is in solution (see Theoretical, section F)_ Under this experimental 
condition, Wilson’s equation, eqn. A7, represents the continuity equation of the flow 
(see Theoretical, section F), and the above boundary condition can be written as 

ke ‘1 - 

d[V/(aLO)] = Ge*’ (AlO) 

where Lo is the width of the column top section, or the total column length when 
00 is small. Eqn. A10 can be rewritten by using the variable m, instead of V, and by 
introducing the parameter 

4s = gL0 (Al 1) 

as . 

dxtev -p= Ge9 -= 4e*) _ 2&L = q(=,,-l - (cp’m + 1)X’ - - ke9 
dm AS 1 - 4e3 4s As W2) 

which can easily be integrated to give 

W3) 

where x?<~., is the value of xce,, when m = m,; this represents the amount of 
molecules loaded on the column in the case of retained molecules (see Theoretical, 
section D). 

Another boundary condition that eqn. A8 has to fuEl is that, when m = mE, 

and whenL>O, i.e. s> 0 

X(e9 = 0 (A14) 

because .it is only at the .top of the column that molecules are adsorbed initially 
(see above), and the width of the initial band should be negligible compared with 
the total length of the column. Under the conditions in eqns. Al3 and A14, eqn. 
A8 becomes 
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= %&, - exp 
: 

for s 

and 

< (tp’m f I)- - (qJ’?n~n t l)I’” 

: I 

(Al9 
!k?*,@ + W 

I 

%w, = 0 for s < 
(f$m + l)=‘*l. - (@?al, t l)i+r. 

4@& -I- W’ -1 

It can now be understood that eqn. 27 in ref. 6 is eqn. Al5 itself, by noticing 
that the subscript e’ is omitted in eqn. 27 in ref. 6, by recalling the relationships 
between the symbols in ref. 6 (left-hand sides) and those in the present paper (right- 
hand sides) : 

6S = @As (Al71 

and 

Q = 1 + ~@‘,-‘(@z + 1)” (AU) 

and by using the approximations 

WJ’) 

which 

q(p)-f (fp’m -I- l),’ < 1 

is obtained from eqn. A!ZJ 

Q-1 (Al% 

for Q in the denominator of the first equation in eqn. 27 in ref. 6 

1ogn M 4<Q,,-- (+z + 1)“’ (Azo) 

X’ a x’ -j- 1 (A211 

and 

(q’m + 1y*1 >> (+Tz,, + l)x’+1 Q-322) 

The theory in ref. 6 is based on DeVault’s equation, eqn. 1, 6 or’ I2 in ref. 6, 
instead of Wilson’s equation, equ. A7. However, eqn. 16 in ref. 6, which is valid 
when li or 112 is small or near the be ,&ming of the chromatographic process, re- 
duces the, result obtained from eqn. 12 in ref. 6 to that obtained from Wilson’s 
equation. Similarly, eqn. 22 in ref. 6 reduces the result obtained from the boundary 
condition, eqn. 21 in ref. 6, to that obtained from the condition in eqn. Al0 or 
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A12. All results obtained in ref. 6 and those obtained in this Appendix are valid 
only near the beginning of the chromatographic process (see above) or when the 
column is not so long; these explain satisfactorily, however, the decrease in the 
width of the experimental cbromato,mm (this occurs after the initial increase in 
rhe width of the band of molecules on the top of the columu) with an increase 
in the eohnnn length (Fig. 1 in ref. 6), and the shape of the experimen’tal chro- 
matogram (Fig. 2 in ref. 6), observed for Iyso-qme, a molecule with a smali value 
(4-8) of x’ (see ref. 8), in a range of short column lengths, respectively. 

Eqn. Al5 is a discontinuity solution to eqn. A7, and the values of s and m 
at which there is a discontinuity of xCe,, fulfil the relationship given by eqn. 38’. 
Especially when x’ -+ co, eqn. Al5 tends to a d-function, which means that, when 
x’ is large, the l?rst decrease in the width of the chromatogram with an increase 
in the column length is very rapid; a small increase in the width of the chromato- 
gram which follows this decrease, owing to the molecular diffusion on the column, 
must therefore begin when the column is very short. It should be noted that eqn. 
-415 tends to a &function also if ds tends to zero. 

In stepwise elution, it is DeVault’s equation, eqn. 46, Le., 

that is valid (provided that there is no molecular diffusion). It should be noted again 
that L?,e*, is different from Q in eqns. AlSA20; see note related to eqn. 40. Bee*, 
can be written as 

Eqn. A23 has the general solution 

f&,> = R C _+ . V-L] (A251 

where R is any function. For small loads, the initial band on the top of the col- 
umn must have a small width, AL, in which molecules move at random and where 
eqn. A23 cannot be applied (see above). The width of the band must broaden, how- 
ever, immediately after the development process begins, if a low enough molarity 
of competing ions is used for the elution of molecules, and eqn. A23 becomes valid. 
If a high molarity of competing ions is used for the development of molecules, eqn. 
A23 is also valid. In this instance, eqn. A23 simply shows that the band of mol- 
ecules with a small width migrates with an RF value equal to B<pe, (w 1) (see below). 
In this instance, it can be considered that the loss of molecules from the section, 
4L, at the top of the column is virtually equal to the total amount of molecules 
in the interstitial liquid in this section; this can be considered as the boundary con- 
dition that eqn. A25 has to fi,dfll when L --f 0 (and when V > 0), which can be 
writtenas 
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Eqn. A26 can easily be integrated to give 

Q -Q&,.exp -w> - [ W7) 

where PO., is the value of _L&, when V = 0; this represents the amount of mol- 
ecules loaded on the column. Another boundary condition that eqn. A25 has to fulfil 
isthatwhen V=OandL>O 

Q -0 -<e9 - W8) 

Under the conditions in eqns. A27 and A28, eqn. A25 becomes 

Q (07 - -l2& -exp I -&- [* -V-L ‘}l 
for 4e9 y L < - - I 

a W9) 
! and 

32 (@‘) = 0 for L> 
B (0’) _ y 

a I 

It is easy to understand that eqn. A9 in the Appendix in ref. 6 is eqn. A29 
itself, because the concentrations or the amounts of molecules in solution, C and 
C*, in eqn. A9 in ref. 6, can be transformed, by using eqn. 41, into S2,p,, and 
PcpV,, respectively, and SE and Ml in ref. 6 are related to AL, Bees,, cc, etc., in 
this Appendix by the relationships 

6L=AL (A301 

and 

(A311 

where, for the derivation of the extreme right-hand side term, eqns_. 12 and 14 have 
been used. it should be noted that the terms in the first, second and third pa- 
rentheses of this term represent the property of the column, the property of the 
molecule and the influence of competing ions on the adsorption of mo!ecules on 
the HA surface, respectively. In the Appendix in ref. 6, it was mentioned that eqn. 
A9 in ref. 6 or eqn. A29 explains satisfactorily the general shape of the experi- 
mental chromatogram with tailing obtained in stepwise cbromatograpby with seal! 
loads (see Fig. AI in the Appendix in ref. 6) Eqn. A29 also shows, with eqn. A24, 
that, when the development is carried out with a high molar&y of competing ions, 



46 -. T. KAWAS~ 

the value of B,eS, approaches unity and that the chromatogram becomes sharp. 
Particularly when x’ is large, a transition in the value of Bo,; from 0 to 1, with an 
increase. in m, occurs in a very small range of m (see Theoretical, section F-Z). 
Therefore, it can be considered that, if the molarity of the solvent used for the 
chromatography is lower than the value of pn” at which there is the transition of 
Bra,), the elution of molecules does not occur, whereas if the molarity of the eluent 
is higher than m”, the elution must be carried out with an RF value almost equal 
to unity, and a sharp chromatogram must he obtained_ It should be noted that eqn. 
A29 tends to a a-function, if 4L tends to zero. 

Finally, the above explanation of tailin, = of the chromatogram is different 
from both the classical explanation, in which the adsorption isotherm of molecules, 
tile slope of the tangent of which decreases with an increase in the concentration 
of molecules in solution, is assumed2s3, and the explanation on a kinetic basis as 
represented by Thomas1g (see also ref. 20) The latter cannot he applied at least 
to HA chromatography, in which the shape of the chromatogram is virtually inde- 
pendent of the flow-rate (see Introduction). Further, in both theories, a boundary 
condition such that C,,., or Q,., = 0 is applied instead of eqn. A27 when L = 0 
and V > 0, which is valid only if eqn. A23 can be applied in the interior of the 
initial band on the top of the column, i.e., if the value of 4L is large (see above 
and the Appendix in ref. 6). This condition should not, therefore, be applied when 
the initial band has a small width or with small loads (and especially in stepwise 
chromatography; see below), at least for the purpose of considering the shape of 
the chromatogram (see below). The situation is the same even if the flow on the 
column is highly homogeneous, because it must always be a random thermal mo- 
tion of molecules that governs in a small enough region on the column. In this paper, 
however, this classical boundary condition was applied as eqn. 22 in gradient chro- 
matography; this classical condition is valid in this instance because the width of the 
chromatogram decreases rapidly with an increase in the col.umn length in the initial 
step of the chromatography (see above; see also Fig. 6 in ref. 17 and Fig. 1 in ref. 6) 
The effect of broadening of the band of molecules on the column, which occurs 
before this decrease and just at the beginning of the development process, therefore, 
does not appear unless the cohunn is short. Further, the minimum length of the 
column necessary for this effect to appear decreases with increase in the value of 
x’ (see above). This can be compared with stepwise chromatography, where the 
chromatogram continues to have a constant shape during the development process, 
provided that there is no effect of the longitudinal diffusion of molecules except 
initial broadening of the band. In the Theoretical, sections F-2, a band of molecules 
with an infinitesimal width was considered in order to show the validity of DeVault’s 
equation in the stepwise chromatography; this is equivalent to considering, as a 
boundary condition, the classical condition C,,., or I&.,, = 0 when L = 0 and V < 
0. However, our purpose was to consider the rate of migration of molecules, RF, 
which is the same in any part of the band. In this instance, to consider the 
infinitesimal band is equivalent to following the movement of a particular point in 
the interior of the band (see Theoretical, section I;-2). 
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